Monitor[Do[result[n]=Import["/Users/sw/Dropbox/Physics/Data/TagSystems/PostTagSystem/Results-1/"<>ToString[n]<>".wxf"],{n,9,20}],n];
In[]:=
Monitor[Do[result[n]=Import["/Users/sw/Dropbox/Physics/Data/TagSystems/PostTagSystem/Results-1/"<>ToString[n]<>".wxf"],{n,9,20}],n];
In[]:=
Length[result[20]]
Out[]=
3145728
In[]:=
result[20][[100]]
Out[]=
{0,33}{64,0}
In[]:=
result[20][[1000]]
Out[]=
{0,333}{144,10}
20:33:0
In[]:=
{0,IntegerDigits[33,2,20]}
Out[]=
{0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1}}
{n/3,an+b,cn+d}[[Mod[n,3,1]]]
a>1,c>1
In[]:=
Table[{n/3,an+b,cn+d},{a,5},{c,5},{b,0,2},{d,0,2}]
NKS code
NKS code
In[]:=
Install["/Users/sw/Dropbox/GeneralBox/Blogs/PostTagSystem/LegacyCode/JesseVersion/csslink/csslink.out"]
Out[]=
LinkObject
In[]:=
LinkPatterns[%]
Out[]=
{GCSSSearch2[len_,num_],CSSSearch2F[len_,num_],CSSSearch2FK[k_,dn_,len_,num_],GCSSLength2[rules_,tmax_,dt_:1],GCSSCount2[rules_,tmax_,dt_:1],GCSSHistory2[rules_,tmax_]}
In[]:=
GCSSLength2[{{0,0}{0},{1,0}{1,0,1},{0,1}{0,0,0},{1,1}{0,1,1}},1000];
In[]:=
ListLinePlot[%]
Out[]=
In[]:=
AbsoluteTiming[GCSSLength2[{{0,0}{0},{1,0}{1,0,1},{0,1}{0,0,0},{1,1}{0,1,1}},1000];]
Out[]=
{0.002101,Null}
In[]:=
Length/@GCSSEvolveList[{2,{{0,0}{0},{1,0}{1,0,1},{0,1}{0,0,0},{1,1}{0,1,1}}},{1,1},99]
Out[]=
{2,3,4,5,4,5,6,7,8,9,10,11,12,11,12,13,14,15,16,15,14,13,14,15,16,17,18,17,16,15,14,15,16,17,18,19,18,17,16,15,14,15,16,17,18,19,18,17,18,19,20,19,18,17,18,19,20,21,22,23,24,23,24,25,26,27,26,25,26,27,28,29,30,29,28,27,28,29,30,31,30,29,28,29,30,31,32,33,32,31,30,29,30,31,32,33,32,31,30,29}
In[]:=
%==%432
Out[]=
True
In[]:=
Length/@GCSSEvolveList[{2,{{0,0}{0},{1,0}{1,0,1},{0,1}{0,0,0},{1,1}{0,1,1}}},{1,1},1000];//AbsoluteTiming
Out[]=
{0.004837,Null}
In[]:=
TakeList[IntegerDigits[146,3,6],{1,2,3}]
Out[]=
{{0},{1,2},{1,0,2}}
In[]:=
TSGQueueEvolve[{2,{{0},{1,2},{1,0,2}}},{1,1,0,1,1,2,0,1},1]
Out[]=
{0,1,1,2,0,1,1,2}
In[]:=
TSGQueueLengthList[{2,{{0},{1,2},{1,0,2}}},{1,1,0,1,1,2,0,1},100]
Out[]=
{8,8,7,7,6,6,5,6,6,5,4,4,3,3,2,3,3,4,5,4,4,5,5,5,6,7,8,7,7,8,7,6,7,6,5,5,6,5,6,5,4,3,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
In[]:=
TSGQueueLengthList[{2,{{0},{1,2},{1,0,2}}},{1,1,0,1,1,2,0,1},100,10]
Out[]=
{5,4,8,5,1,1,1,1,1,1}
In[]:=
TSGDirectEvolve[{2,{{0},{1,2},{1,0,2}}},{1,1,0,1,1,2,0,1},1]
Out[]=
{0,1,1,2,0,1,1,2}
In[]:=
TSGDirectEvolveList[{2,{{0},{1,2},{1,0,2}}},{1,1,0,1,1,2,0,1},5]
Out[]=
{{1,1,0,1,1,2,0,1},{0,1,1,2,0,1,1,2},{1,2,0,1,1,2,0},{0,1,1,2,0,1,2},{1,2,0,1,2,0},{0,1,2,0,1,2}}
TSGDirectEvolveList[{2,{{0},{1,2},{1,0,2}}},{1,1,0,1,1,2,0,1},5]
NKS Rule Investigation
NKS Rule Investigation
In[]:=
GCSSEvolveList[{2,{{0,0}{0},{1,0}{1,0,1},{0,1}{0,0,0},{1,1}{0,1,1}}},{1,1},300]
In[]:=
Length/@%104//Max
Out[]=
37
In[]:=
Position[%,{}]
Out[]=
{{289},{290},{291},{292},{293},{294},{295},{296},{297},{298},{299},{300},{301}}
In[]:=
ListStepPlot[(Length/@GCSSEvolveList[{2,{{0,0}{0},{1,0}{1,0,1},{0,1}{0,0,0},{1,1}{0,1,1}}},#,300])]&/@Tuples[{1,0},2]
Out[]=
,,,
In[]:=
With[{n=3},ParallelTable[i->Length/@FindTransientRepeat[Length/@GCSSEvolveList[{2,{{0,0}{0},{1,0}{1,0,1},{0,1}{0,0,0},{1,1}{0,1,1}}},IntegerDigits[i,2,n],1000],3],{i,0,2^n-1}]]
Out[]=
{0{3,1},1{19,1},2{5,1},3{287,1},4{9,1},5{17,1},6{0,2},7{159,1}}
In[]:=
Table[ParallelTable[i->Length/@FindTransientRepeat[Length/@GCSSEvolveList[{2,{{0,0}{0},{1,0}{1,0,1},{0,1}{0,0,0},{1,1}{0,1,1}}},IntegerDigits[i,2,n],1000],3],{i,0,2^n-1}],{n,7}]
Out[]=
In[]:=
#[[2,2]]&/@Flatten[%]
Out[]=
{1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,8,1,8,1,1,8,1,1,8,1,8,1,1,8,8,1,1,1,1,8,1,1,1,1,1,1,8,8,1,1,8,8,1,8,1,1,1,1,8,8,1,1,1,1,1,1,8,1,1,1,1,1,8,8,8,1,8,8,1,1,1,8,8,1,8,1,1,1,8,1,1,1,1,8,1,8,1,8,1,8,1,1,0,1,1,1,1,8,1,8,1,1,1,8,1,1,1,8,1,1,8,8,8,1,1,8,8,1,8,1,1,1,1,1,1,0,1,8,1,1,1,8,1,1,1,1,1,8,1,8,8,1,1,1,1,1,1,1,1,1,1,8,1,8,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,8,1,8,1,1,8,8,8,1,8,8,8,1,1,1,1,8,1,1,8,1,1,8,1,1,8,8,2,8,1,1,8,1,1,1,1,1,1,1,1,0,1,1,8,1,1,1,1,1,1,1,1,1}
In[]:=
ListStepPlot[#[[2,1]]&/@Flatten[%89]]
Out[]=
NKS case (e)
NKS case (e)
k=3 rules
k=3 rules
All balanced rules
All balanced rules
Rule sampling
Rule sampling
All rules
All rules
Cyclic Tag Systems
Cyclic Tag Systems
NOTE: results could be off by 1 (or more....)
XXXX
[[[ wasn’t parallelized !! ]]]
[[[ wasn’t parallelized !! ]]]
Compiled Version
Compiled Version